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AbstractMany variables and their interactions can affect
a biotechnological process. Testing a large number of
variables and all their possible interactions is a cum-
bersome task and its cost can be prohibitive. Several
screening strategies, with a relatively low number of
experiments, can be used to find which variables have
the largest impact on the process and estimate the
magnitude of their effect. One approach for process
screening is the use of experimental designs, among
which fractional factorial and Plackett–Burman designs
are frequent choices. Other screening strategies involve
the use of artificial neural networks (ANNs). The
advantage of ANNs is that they have fewer assumptions
than experimental designs, but they render black-box
models (i.e., little information can be extracted about the
process mechanics). In this paper, we simulate a bio-
technological process (fed-batch growth of baker’s
yeast) to analyze and compare the effect of random
experimental errors of different magnitudes and statis-
tical distributions on experimental designs and ANNs.
Except for the situation in which the error has a normal
distribution and the standard deviation is constant, it
was not possible to determine a clear-cut rule for
favoring one screening strategy over the other. Instead,
we found that the data can be better analyzed using both
strategies simultaneously.

Keywords Screening designs Æ Artificial neural
networks Æ Saccharomyces cerevisiae Æ Experimental
error

Introduction

Biotechnological processes are influenced by numerous
factors and their interactions. Further complications
arise from the non-linear nature and time-varying
characteristics of these systems. In addition, certain
measurements are affected by noise and relatively long
sampling times. For these reasons, the optimization of
one factor at a time, although frequently used, is not an
adequate strategy to improve a process and can lead to
wrong conclusions. In contrast, experimental design
strategies are based on the simultaneous variation of
more than one factor. Every available design specifies
the factor levels to be tested, the number of repetitions
and the layout of blocks. Through the statistical analysis
of the results, which implies fitting the data to linear
models or higher-degree polynomials, it is possible to
determine quantitatively the effect of factors, or input
variables, on the system dynamics. Among experimental
designs, screening designs are used to study a large
number of factors in a small number of experiments,
with the goal of finding which factors are important and
discarding the others. Other designs can be used later to
analyze fewer factors with more experiments and maybe
more levels, to allow fitting the data to second-degree
polynomials, as is the case with response surface meth-
odologies. Two common screening designs are fractional
factorials and Plackett–Burman designs. Fractional
factorials are fractions of the corresponding full facto-
rials and Plackett–Burman designs are useful for analyze
a large number of factors in relatively few runs, since
they estimate only the main effects while neglecting all
the interactions.

Experimental error has a large effect on the results
obtained with these methods. If the data follows a linear
trend, the estimates obtained using linear methods are
the best possible and their variance is minimal only when
the experimental error has a normal distribution
(Gaussian noise) and the standard deviation (SD) is
constant for any point on the experimental space.
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However, these assumptions do not always hold true for
biological systems; and many times the actual error
distribution can be difficult to identify. Two frequent
violations of these assumptions are the occurrence of a
constant coefficient of variation (cv), instead of a con-
stant standard deviation, and the presence of error with
log-normal distribution. If cv is constant, SD increases
with the magnitude of the observed variable. A log-
normal variable can be transformed into a normal one
by applying a logarithmic transformation. However, the
analysis of transformed variables is difficult when more
than a few output variables and their interactions are
studied together, a typical situation in biotechnology [2].

A different, black-box strategy is the use of artificial
neural networks (ANNs). ANNs are trained with sets of
inputs and outputs and they ‘‘learn’’ how to reproduce
an output from the input. If adequately trained, ANNs
can yield outputs similar to the real world from different
sets of inputs. Some of the reasons for their appeal are
that they can model non-linear models and they require
no previous knowledge of the system dynamics. Their
main drawback is their black-box nature. Even when the
ANN can satisfactorily simulate the system it is model-
ing, little can be said about the underlying relationships
between variables. Another problem is over-training the
ANN, which happens when the network is very good at
predicting only the outputs from the training data set
and performs poorly with other inputs. However, there
are several procedures available to limit over-training [6,
13].

Fed-batch culture is the method of choice for the
industrial production of baker’s yeast, Saccharomyces
cerevisiae. This method of production ensures that most
of the sugar available in the culture medium is channeled
through the oxidative metabolism with minimum pro-
duction of ethanol and high conversion of carbon source
into biomass. This microorganism is an excellent model
system for simulation and theoretical studies because its
genetics and metabolism are well known and there are
many theoretical models describing its growth in biore-
actors [10, 11].

The goal of this paper is to compare experimental
screening designs analyzed with standard linear regres-
sion models and ANNs for the optimization of a simu-
lated fed-batch process for biomass production of S.
cerevisiae under varying levels of experimental noise
with different underlying statistical distributions.

Materials and methods

Simulation model

Simulated experiments were generated using the model
developed by Pham et al. [11]. This model simulates
aerobic fed-batch fermentations of S. cerevisiae based on
a kinetic model of overflow metabolism and allows
variations in a large number of parameters and factors.
For this study, seven factors were selected: initial dry cell
weight (X0), initial glucose concentration (S0), initial
ethanol concentration (E0), initial volume (V0), initial
feed rate (F0), glucose concentration in feed (Sf) and
specific feed rate (SFR). For every factor, one high level
and one low level were chosen and simulations were then
run with all 128 (27) possible combinations of levels, plus
an additional simulation with all factors set at the
middle point.

The biomass concentration after 12 h of growth was
the output variable analyzed. The levels tested for each
factor and their coding are shown in Table 1. It was
assumed that the fermentor had a total volume large
enough to accommodate the final volume of any
experiment.

Statistical analysis and random numbers generation

R ver. 1.7.1 statistical software (R Foundation for Sta-
tistical Computing, Vienna, Austria) was used for data
analysis. Random numbers with a uniform distribution
were generated using the random number generator of
Microsoft Excel. The randomness of these data was
analyzed with the test described by Banks et al. [1] and
proved satisfactory for the short sequences required.
Random numbers with normal or log-normal distribu-
tions were obtained from the uniformly distributed ser-
ies applying inverse probability functions. Three
screening designs design were used: a 12-experiment
Plackett–Burman design and fractional factorial designs
for 27-4 and 27-3 experiments [2]. Different random error
terms were added to every one of the 129 biomass values
simulated. Four different distributions were selected for
error distribution: normal with constant SD, log-normal
with constant SD, normal with constant cv and log-
normal with constant cv. Several values of SD and cv

Table 1 Factors (variables) tested in this study and range of values

Factor Low value
(code �1)

High value
(code +1)

Center
value(code 0)

Factor
name (units)

X0 0.5 2 1.25 Initial dry cell weight (g l�1)
S0 0.005 0.1 0.0525 Initial glucose concentration (g l�1)
E0 0 1 0.5 Initial ethanol concentration (g l�1)
V0 4 7 5.5 Initial volume (l)
F0 4 10 7 Initial feed rate (g h�1)
Sf 60 120 90 Glucose concentration in feed (g l�1)
SFR 0.15 0.35 0.25 Specific feed rate (h�1)
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were tested (Table 3). Two data sets were generated for
every combination of design, distribution of the error
and magnitude of SD or cv.

Low and high values of factors were coded as �1 and
+1, respectively, prior to statistical and ANN analysis.
This coding yields experimental designs that are
orthogonal and in consequence the estimated coefficients
have minimum variance [2]. It was empirically shown
that the Bayesian regularization technique for ANN
training also works better with �1, +1 coded variables
[4].

Neural networks

ANNs were built using the Neural Network Toolbox
included in MATLAB ver. 6.0. (The MathWorks,
Mass., USA). The architecture consisted of a feed-for-
ward network with three layers: one input layer with
seven inputs, one hidden layer with three neurons and
one output layer with one output. The transfer function
of the neurons in the hidden layer was the hyperbolic
tangent sigmoid transfer function (tansig) and the neu-
ron in the output layer had a linear transfer function.
The Bayesian regularization back-propagation (trainbr)
method was used for training. With this method, it is
possible to choose the number of neurons in the hidden
layer that ensures good predictions while minimizing the
risk of over-fitting [4, 8].

Results

Data simulation and analysis

Growth curves of S. cerevisiae were simulated using the
model for aerobic fed-batch cultures developed by Pham
et al. [11]. Seven factors were varied and 129 simulations
were run as described in the Materials and methods. The
biomass concentration after 12 h of growth was the
output variable analyzed throughout this study.

A summary review of the 129 simulated biomass data
showed that the lowest value of final biomass was
5.20 g l�1 and was obtained in two experiments with
factors set at (in coded values): X0= �1, S0= �1, V0=
+1, F0= �1, Sf= �1, SFR= �1. E0 was �1 in one
experiment and +1 in the other. The highest biomass
value was 20.18 g l�1 and was observed in two experi-
ments, differing only in the E0 setting. The settings for
the other factors were: X0= +1, S0= +1, V0= �1,
F0= +1, Sf= +1, SFR= +1. The biomass values had
a 3.9-fold variation (20.18:5.20) across the experimental
space, which ensured that a wide range of physiological
conditions were covered.

The combination of factors and levels used to gen-
erate the biomass data, excluding the central point,
corresponded to a full factorial experiment of 27. These
data were analyzed by analysis of variance (ANOVA)

and the six-factor and seven-factor interactions were
pooled and used as the error term. The results are shown
in Table 2. The initial glucose (S0) and ethanol (E0)
concentrations were not significant (P>0.05), while all
other factors were highly significant (P<0.0001), but
with different effects: V0 had a large negative effect,
while Sf, SFR, F0 and X0 had decreasing positive effects.
Also, some two-factor interactions were significant at
P<0.01, involving either Sf or SFR: Sf · X0, Sf · V0, Sf

· F0 and SFR · V0, SFR · F0, SFR · Sf.

Generation of simulated data sets with different error
structures

From the pool of 129 simulations, biomass data corre-
sponding to the layouts of the screening designs
(Plackett–Burman, fractional factorial) were extracted.
Then, random errors with different magnitudes and
distributions were added to the biomass values to gen-
erate duplicate ‘‘experimental’’ data sets.

The different ‘‘experimental’’ biomass data sets were
fitted using linear regression. As the error term for the
regression models, we used the SD of three replicated
central points or the pooled effects of interaction factors
that did not include the main factors. The t-test was used
to assess the statistical significance of factors. Table 3
shows the average number of significant factors detected
under every condition tested. As expected, the ability to
detect significant factors decreases with increasing SD or
cv values and data with a normally distributed error
gave better predictions than log-normal data. Although
only one combination (normally distributed errors with
constant SD) fulfills the requirements of linear models, it
was possible to detect significant factors with the other
error structures. The use of the pooled effects of inter-
action terms for error estimation showed an enhanced
sensitivity, compared with central points.

Model building and testing

Linear models were built from every ‘‘experimental’’
data set, considering only the significant factors deter-

Table 2 Full factorial analysis of the whole data set (128 experi-
ments). The mean squared error (MSE) is an estimator of the
magnitude of the effect on the overall variability. + Positive effect,
� negative effect, NS not significant

Factor P-value MSE

X0 0.000001* 59.419+

S0 0.363525 0.292NS

E0 0.577316 0.106NS

V0 0.000000* 429.240�

F0 0.000000* 124.899+

Sf 0.000000* 1046.927+

SFR 0.000000* 131.990+

*P-values are highly significant (P<0.05)
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mined in the previous section. Additional data sets were
generated for validation (validation data set); and they
had the same error structure as the corresponding model
data set but the biomass values were sampled at different
points over the experimental space. ANNs were also
built from the ‘‘experimental’’ data sets. All the ANNs
had the same architecture and were trained with the
same methods. Additional validation data sets were also
generated.

To validate the models, predicted values were esti-
mated from the models built before at the same factor
levels used for generating the validation data sets. Pre-
dicted values were compared with the validation data
sets using the mean squared error (MSE). MSE values
were lower for 27-3 fractional factorials than for 27-4

experiments. The average MSE values for Plackett-
Burman and 27-3 fractional factorial designs were
slightly lower for models built using interaction terms
instead of central points for error estimation, although
the differences were not significant. For ANNs, MSE
values decreased when the number of data points used
for training increased. So, the lowest MSE was obtained
with networks trained with 16 points distributed
according to the layout of the 27-3 fractional factorial.
Figure 1 shows the MSE values obtained with the
models that performed better: linear models from a 27-3

fractional factorial and a 12-experiment Plackett–Bur-
man design and a model from an ANN trained with 16
data points.

Discussion

The smallest data layout (27-4 experiments) analyzed
with linear models could detect several significant fac-
tors with low values of SD or cv, but the predictive
capacity was rather poor, i.e., MSEs were large for both
regression and ANN models. These designs can be easily
augmented to 27-3 designs, as we did here, taking the
smaller design as one half of the larger. However, if one
smaller design indicates that some factors are not sig-
nificant, it is not recommendable to augment that de-
sign. Instead, a new analysis should be applied only to
the significant factors. The performance of Plackett–
Burman designs was lower but close to that of 27-3 fac-
torials, while requiring four experiments less. In cases
where the cost or difficulty of experiments is an issue, the
use of Plackett–Burman designs can be a satisfactory
tool, although they cannot be augmented and their
interactions are difficult to interpret. The best results
were obtained with the 27-3 experiments analyzed with
linear models and ANNs. Adding central points to the
designs neither increased the capacity to detect signifi-
cant factors nor improved the predictive value of mod-
els. However, even if they are not included in the design,
it is worth running central points because they are a
valuable estimation of the dispersion at the center of the
layout.T
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ANOVA of the full set of simulated data showed that
five factors and six interactions were significant (Ta-
ble 2). Either SFR or F0 were always present in the
interactions; and the non-significant factors were E0 and
S0. These results are in agreement with what is expected
of a fed-batch process, in which most of the control lies in
the feeding stage. The linear models sometimes detected
six significant factors, one more than the five actually
significant. This can be due to the distortion introduced
when fitting a highly interacting and at some regions
non-linear process to linear models that disregards those
characteristics. Even with these simplifications, the
models still allowed a good insight into system dynamics.

For the ANN models, the lowest MSE values were
obtained with the largest data sets: 16 data points (27-3

fractional factorial). This is in agreement with other
published results which show that predictions improve
when increasing the size of the training set [6, 7]. The
Bayesian regularization technique was used for training
because it takes all the available data for training, while
other learning algorithms require splitting the data into
one subset for training and another for testing in order
to get good fit without over-fitting [4, 8]. Since the data
sets tested were quite small, it would not have been
recommended to reduce their size further.

Normally and log-normally distributed data with ei-
ther constant SD or constant cv could be reliably ana-
lyzed with conventional fractional factorials or ANNs
when the SD for the three central points was lower than
2. There was no clear pattern to favor experimental
designs or neural networks; and increasing cv or SD
increased MSE values for all conditions tested, except
for normal distributions with constant SD. A convenient
strategy is using the data layouts of the 27-3 experiments,
building linear regression and ANN models and then
comparing the predictions of both techniques. Since the
analytical procedures are very different for each method,
when the predictions are similar they can be reliably

accepted. In contrast, those regions of the experimental
space yielding grossly different predictions need further
research. This concept can be extended to other situa-
tions with a different number of factors. The data layout
from an appropriate experimental design should be se-
lected, the experiments performed and the data fitted to
linear, or polynomial, models and used for ANN train-
ing. Then, predicted values for the experimental data
and for unexplored, intermediate values should be cal-
culated with both methods. Using MSE or correlation
coefficients and graphical methods, it is possible to make
comparisons between the predictions of both models
and between predicted and observed values. If the
agreement between values from the two models is poor,
the design should be augmented or replicates should be
added. If replicates are added, the value to be analyzed is
their average.

Linear models can reveal significant factors, the sign
of their effect and make predictions, while ANN models
can be used for optimization and for making predic-
tions. Nagata and Chu [9] combined ANNs with genetic
algorithms to search the experimental space to find
maximum points. In contrast, 2n-k fractional factorial
designs have to be augmented to perform the search for
maximum or minimum points. Screening experiments
have been used to improve medium composition [3, 5,
12]. This study focused on different model parameters
and not only culture medium design, but it could be
easily applied to such a situation.
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